Chapte	r 1 : Introduction to Control Systems 1-1 to 1-6	2.10.3	Advantages of Analogous Systems	2-16
1.1	Introduction1-1	2.11	Representation by Nodal Method	2-16
1.2	Important Definitions1-1	2.12	Solved Examples on Mathematical	
1.3	Open Loop System1-2		Modelling	2-16
1.3.1	Open Loop Examples1-2	2.13	Thermal Systems	2-20
1.3.2	Advantages and Disadvantages of Open	Chapte	er 3 : Block Diagram Reduction	3-1 to 3-29
	Loop Systems1-3	3.1	Introduction	3-1
1.4	Closed Loop System1-3	3.1.1	How to Draw a Block Diagram?	3-1
1.4.1	Closed Loop Examples1-3	3.2	Block Diagram Definitions	3-1
1.4.2	Advantages and Disadvantages of Closed	3.3	Block Diagram Reduction	3-2
	Loop System1-5	3.3.1	Derivation of Closed Loop (Feedback)	
1.5	How does One Convert an Open Loop		Transfer Function	3-2
	System to a Closed Loop System?1-5	3.3.2	Advantages of Block Diagram	3-3
1.5.1	Comparison of Open and Closed Loop Systems 1-6	3.3.3	Disadvantages of Block Diagram	3-3
1.6	Requirements of a Good Control System1-6	3.4	Rules for Block Diagram Reduction	3-3
Chapte	er 2: Transfer Function and Mathematical	3.5	Solved Examples	3-9
	Modelling 2-1 to 2-21	Chapte	er 4 : Signal Flow Graph	4-1 to 4-20
2.1	Introduction2-1	4.1	Introduction	4-1
2.2	Transfer Function2-1	4.1.1	How to Draw a Signal Flow Graph?	
2.3	Poles and Zeros of a Transfer Function2-4	4.2	Method to Draw SFG from System Equ	
2.4	Properties of Transfer Function (T.F.)2-7	4.3	Method to Draw SFG from Block Diagr	
2.5	Proper and Improper Transfer Functions2-7	4.4	Some Important Signal Flow Graph Te	
2.6	Advantages and Disadvantages of Transfer			
	Function2-7	4.5	Properties of SFG	4-4
2.7	Impulse Response2-8	4.5.1	Comparison of Block Diagram	
2.7.1	Impulse Response of a System2-8		and SFG Methods	
2.8	Solved Examples on Transfer Functions 2-10	4.6	Mason's Gain Formula	4-5
2.9	Mathematical Modelling of Mechanical	4.6.1	Mason's Gain Equation	4-5
	and Electrical Systems2-11	4.7	Steps for Solving S.F.G. using Mason's	
2.9.1	Translational Motion2-11		Gain Formula	4-5
2.9.2	Rotational Motion2-13	4.7.1	Solved Examples	4-6
2.9.3	Electrical Systems2-14	4.8	Solving SFG When Equations are Given	ı4-19
2.10	Analogous Systems2-14	4.8.1	Solved Examples	4-19
2.10.1	Force - Voltage Analogy2-15	4.9	Use of Mason's Gain Formula	
2.10.2	Force - Current Analogy 2-15		for Electrical Network	4-19

Chapter	5: Time Response Analysis 5-1 to 5-43
5.1	Introduction5-1
5.1.1	Time Response5-1
5.2	Inputs Supplied to a System5-2
5.3	Steady State Response5-4
5.3.1	Effect of Input R(s) on Steady State Error5-5
5.3.2	Effect of Open Loop Transfer Function G(s) H(s)
	on Steady State Error ess5-7
5.4	Subjecting a Type 0 System to a Step,
	Ramp and Parabolic Input5-8
5.4.1	Step Input to a Type 0 System5-8
5.4.2	Ramp Input to a Type 0 System5-8
5.4.3	Parabolic Input to a Type 0 System5-8
5.5	Subjecting a Type 1 System to a Step,
	Ramp and Parabola Input5-9
5.5.1	Step Input to a Type 1 System5-9
5.5.2	Ramp Input to a Type 1 System5-9
5.5.3	Parabolic Input to a Type 1 System5-10
5.6	Subjecting a Type 2 System to a Step,
	Ramp and Parabola Input 5-10
5.6.1	Step Input to a Type 2 System5-10
5.6.2	Ramp Input to Type 2 System5-11
5.6.3	Parabola Input to Type 2 System5-11
5.6.4	Examples on Steady State Response5-12
5.7	Transient Response 5-18
5.7.1	Analysis of First Order Systems 5-18
5.7.2	Analysis of Second Order System5-20
5.7.2(A)	Damping Factor5-20
5.7.2(B)	Natural Frequency of Oscillation (ω_n) 5-20
5.7.2(C)	Position of Poles in a 2^{nd} Order System 5-21
5.7.3	Effect of $\boldsymbol{\xi}$ on the Position of Closed
	Loop Poles5-21
5.7.4	Unit Step Response of a 2^{nd} Order System5-22

5.7.5	Time Response of a Second Order
	System with $0 < \xi < 1$ 5-24
5.7.5(A)	
	of a 2 nd Order Underdamped System5-24
5.7.5(B)	Derivation of Unit Step Response of a 2 nd Order Underdamped System5-25
5.8	Transient Response Specifications (Design Specifications for Second Order Systems)5-28
5.8.1	Derivation of Rise Time (T_r)5-28
5.8.2	Derivation of Peak Time (T_p) 5-29
5.8.3	Derivation of Peak Overshoot (M $_{p})$ 5-30
5.8.4	Derivation of Settling Time (T_s)5-31
5.9	Solved Examples on Transient Response5-32
5.10	Sensitivity5-42
Chapter	6: Stability Analysis 6-1 to 6-19
6.1	Introduction 6-1
6.1.1	Stable System 6-1
6.1.2	Unstable System6-1
6.1.3	Marginally Stable System 6-2
6.2	Time Response of Poles 6-2
6.3	Hurwitz Stability Criterion6-6
6.3.1	Disadvantages of the Hurwitz Criterion 6-8
6.4	Routh Stability Criterion 6-8
6.5	Routh Criterion Special Cases6-11
6.5.1	Special Case 16-11
6.5.2	Special Case 26-13
6.6	Relative Stability6-14
6.7	Application of Routh's Criterion6-15
6.8	Solved Examples6-15
Chapter	7: Root Locus 7-1 to 7-42
7.1	Introduction 7-1
7.2	Angle and Magnitude Condition7-2
7.3	Construction of Root Locus7-3
7.3.1	General Method for Drawing Root Locus7-3

Response Specifications and Time

8.6 8.7 Response Specifications......8-7

Bandwidth8-8

Solved Examples.....8-9

Chapter	9: Bode Plots	9-1 to 9-48
9.1	Introduction	9-1
9.2	Log-Scales	9- 2
9.2.1	Why do we Use the Log Scales on the X-a	ıxis? 9-2
9.2.2	What are Log-Scales?	9-2
9.2.3	Scale Marking	9-3
9.3	Standard Form for GH (jω)	9-3
9.4	Bode Plots of Standard Factors	9-4
9.4.1	Bode Gain Factor K ₁	9-4
9.4.2	Poles at Origin or Integral Factor $\left(\frac{1}{j\omega}\right)^k$.	9-4
9.4.3	Zeros at Origin or Derivative Factor (jω)	g 9-6
9.4.4	First Order Poles $\frac{1}{\left(1+j\frac{\omega}{p_1}\right)}$	9-6
9.4.5	First Order Zeros $\left(1+j\frac{\omega}{z_1}\right)$	9-8
9.4.6	Second Order Poles	9-8
9.4.7	Second Order Zeros	9-10
9.5	Frequency Domain Specifications	9-11
9.5.1	Gain Margin (G.M.)	9-11
9.5.2	Phase Margin (φ _{pm})	9-11
9.5.3	Bandwidth	9-11
9.5.4	Cut-off Frequency (ω_c)	9-12
9.5.5	Cut-off Rate	9-12
9.5.6	Resonance Peak Frequency (M _P)	9-12
9.5.7	Resonant Frequency (ω_p)	9-12
9.5.8	Gain Crossover Frequency (ω_{gc})	9-12
9.5.9	Phase Margin Angle (γ)	9-12
9.5.10	Phase Crossover Frequency (ω_{pc})	9-12
9.6	Relative Stability	9-12
9.7	Steps for Solving Bode Plots	9-13
9.8	Summary of Bode Magnitude and Pha	se
	Plots of Various Terms	9-14

9.9	How to Draw Lines of 20, 40, 60 dB/dec 9-14
9.10	Advantages of Bode Plots9-16
9.11	Solved Examples9-16
9.12	Other Terms in Bode Plots9-46
9.12.1	Bode Plot for Transportation Lag9-46
Chapter	10 : Polar and Nyquist Plots 10-1 to 10-32
10.1	Introduction 10-1
10.2	Polar Plots 10-1
10.2.1	Advantages of Polar Plots10-1
10.2.2	Polar Plot of a 1 st Order Pole $\left(\frac{1}{s+p}\right)$ 10-2
10.3	Effect of Adding More Simple Poles10-3
10.4	Effect of Adding Pole at Origin10-5
10.5	Stability on Polar Plots10-8
10.5.1	A Simple Way to Check Stability on
	Polar Plots10-11
10.6	Nyquist Analysis - Mapping10-12
10.7	Nyquist Stability Criterion10-14
10.7.1	Actual Encirclement10-15
10.7.2	Modified Nyquist Contour10-15
10.7.3	Advantages of Nyquist Plot10-16
10.8	Relative Stability10-16
10.9	Solved Examples10-16
Chapter	11 : Introduction to Compensator
-	Design 11-1 to 11-35
11.1	Introduction11-1
11.2	Series Compensation11-2
11.3	Gain Adjustment11-2
11.4	Standard Compensators11-4
11.5	Lead Compensator11-4
11.6	Lag Compensators 11-6
11.7	Difference between Phase Lead and Lag Compensation11-7

11.8	Lag - Lead Compensator11-8
11.9	Design of Compensators using Bode Plot11-8
11.9.1	Bode Plot of Lead Compensator11-9
11.9.1(A	.) Derivation of Maximum Phase-Lead
	Frequency (ω_{m})11-9
11.9.1(B) Derivation of Maximum Phase
	Lead Angle (ϕ_m) 11-10
11.9.2	Steps to Design Lead Compensator11-10
11.9.3	Design of Lag Compensator using Bode Plot11-17
11.9.4	Steps to Design a Lag Compensator11-18
11.9.5	Bode Plot of Lag-Lead Compensator11-22
11.10	Compensation using Root Locus11-25
11.10.1	Lead Compensator Design using
	Root Locus11-26
11.10.2	Designing a Lag Compensator using
	Root Locus11-28
11.10.3	Designing Lag-Lead Compensator using
	Root Locus11-31
11.10.4	Effects and Characteristics of Phase
	Lead and Phase Lag Compensation Network11-35
Chapte	r 12 : State Space Analysis 12-1 to 12-34
12.1	Introduction12-1
12.2	Difference between State Space Analysis
	and Transfer Function12-1
12.3	Advantages and Disadvantages
	of Conventional Control Theory12-1
12.4	Advantages and Disadvantages
	of Modern Control Theory12-1
12.5	Concepts of State, State Variables
	and State Model12-2
12.5.1	Definition of State and State Variables,
	State Vectors and State Space12-2

12.6	State Variable Representation	12.10.2	To Obtain Model Matrix12-20
	of Control System12-3	12.11	Equivalent State Equations12-21
12.6.1	State Model of Linear Systems12-5	12.12	Solution of LTI State Equations12-22
12.7	State Diagram Representation 12-6	12.12.1	Solution of Homogeneous State Equation12-22
12.7.1	Non-uniqueness of the State Variable12-6	12.12.2	Properties of State Transition Matrix12-23
12.8	State Space Representation by Specific	12.12.3	Solution of Non-homogeneous
	Types of State Variables12-7		State Equation12-24
12.8.1	Different Representation of State Model12-7	12.12.4	Another Way of Solution of LTI
12.8.2	Forming State Models by Physical Variables 12-7		State Equations12-25
12.8.3	Forming State Model by Phase Variables12-10	12.12.4(A) Solution in Time Domain12-25
12.8.4	State Space Representation using Phase	12.12.5	Properties of State Transition Method12-25
	Variable in Observable Controllable Form12-11	12.12.6	Solution using Laplace Transform12-26
12.8.5	Explanation of State Variable Model by Phase	12.12.7	Controllability and Observability12-26
	Variables using Differential Equation12-12	12.12.8	Transformations12-30
12.9	To Obtain Transfer Function from State	12.12.9	Transformation to Observable
	Variable Model and Vice Versa12-13		Canonical form CCF12-31
12.9.1	To Obtain State Variable Form from	12.12.10	Another way of Computation by Canonical
	Transfer Function12-16		Transformation
12.9.2	Canonical Form of State Variable Model12-17	12.13	Ackerman's Formula12-33
12.10	Diagonalisation12-19		
12.10.1	Eigen Values and Eigen Vectors12-19		
			000